УДК 619:576.895.421

ИКСОДОВЫЙ КЛЕЩЕВОЙ БОРРЕЛИОЗ НА ТЕРРИТОРИИ ВОРОНЕЖСКОЙ ОБЛАСТИ: ЭКОЛОГИЧЕСКИЕ И ЭПИЗООТОЛОГИЧЕСКИЕ ОСОБЕННОСТИ

Б.В. РОМАШОВ¹
доктор биологических наук
Н.С. ВОЛГИНА²
кандидат биологических наук
А.В. ШТАННИКОВ³
кандидат биологических наук
Н.Б. РОМАШОВА¹
кандидат биологических наук
Д.В. ТРАНКВИЛЕВСКИЙ⁴
кандидат ветеринарных наук
Ю.О. БАХМЕТЬЕВА⁴
соискатель

¹ Воронежский государственный природный биосферный заповедник, e-mail: bvrom@rambler.ru
² Ветеринарная клиника «Центр», г. Москва

На территории Воронежской области устойчиво функционируют природные очаги иксодового клещевого боррелиоза. Выявлено два вида возбудителей болезни Лайма — Borrelia afzelii и B. garinii. Переносчиком и резервентом боррелий являются Ixodes ricinus, зараженность которых составляет 25,8 %. Вблизи населенных пунктов установлено увеличение встречаемости боррелий в клещах. Численность иксодесов в теплое время года, в среднем, составляет 2,2 экз. на флаго/км. 18,3 % домашних собак заражены боррелиями.

Ключевые слова: боррелиоз, Ixodes ricinus, Borrelia spp., природные экосистемы, собаки, Воронежская область.

Иксодовые клещевые боррелиозы (ИКБ) (синонимы: Лайм-боррелиоз, боррелиоз Лайма, болезнь Лайма) — это группа природно-очаговых зоонозов с трансмиссивным механизмом передачи возбудителей. Возбудители ИКБ относятся к роду Borrelia семейства Spirochaetaceae. Патогенные для человека и животных виды боррелий объединяют в комплекс Borrelia burgdorferi sensu lato (s.l.). Переносчики боррелий — клещи рода Ixodes.

Территория России является наиболее протяженным (от побережья Балтийского моря до Тихого океана) регионом ИКБ в мире. Случаи заболевания отмечены чаще в лесной и лесостепной зонах России [2−7]. В природных очагах возбудители ИКБ циркулируют в составе системы «иксодовые клещи↔дикие животные». Установлена трансфазовая передача боррелий у большинства иксодовых клещей, трансовариально возбудители, как правило,

³ Государственный научный центр прикладной микробиологии и биотехнологии, п. Оболенск

⁴ Центр гигиены и эпидемиологии по Воронежской области, г. Воронеж

не передаются [1]. Основное эпидемическое значение на территории России имеют два вида клещей рода *Ixodes* (*I. persulcatus* и *I. ricinus*), характеризующиеся чрезвычайно широким кругом прокормителей и наибольшей агрессивностью по отношению к человеку и домашним плотоядным. Ареал возбудителей ИКБ в России совпадает с ареалами иксодовых клещей [2, 6]. В центральных и восточных районах и на отдельных территориях лесной зоны Европейской части России наиболее распространенным является *I. persulcatus*, а в более южных и западных районах – *I. ricinus*.

Природные очаги болезни циркулируют в рамках популяционных группировок всех компонентов паразитарной системы — боррелий, иксодовых клещей (все стадии развития) и диких млекопитающих. Возможно, в циркуляции участвуют и другие группы позвоночных в качестве резервуарных хозяев.

Риск заражения и частота заболеваний человека и домашних животных определяются количественными и качественными параметрами всех компонентов паразитарной системы в природных очагах ИКБ. Главными экологическими факторами риска заражения являются число зараженных клещей и интенсивность контакта с ними животных (и человека). В свою очередь, на обсемененность иксодовых клещей возбудителями трансмиссивных болезней влияют численность клещей, видовое разнообразие, численность животных-прокормителей и степень их зараженности боррелиями.

Следовательно, для оценки эпидемического и эпизоотического рисков в отношении ИКБ необходимы сведения, характеризующие эколого-биологические особенности циркуляции боррелий в условиях конкретных территорий. В данном контексте актуальным является изучение этих аспектов взаимоотношений между основными компонентами паразитарной системы очага – иксодовыми клещами, боррелиями, животными-прокормителями, включая вероятных резервуарных хозяев.

В Воронежской области зарегистрирован целый ряд природно-очаговых болезней человека и животных [8, 10], в том числе передаваемых через иксодовых клещей [9]. В последнее время на территории области постоянно отмечают случаи заболевания людей «местным» (эндемическим) ИКБ, что указывает на существование здесь устойчивых природных очагов инфекции. На данной территории специальных исследований, посвященных Лайм-боррелиозам не проводилось. Имеются лишь немногочисленные и фрагментарные данные по фауне и видовому разнообразию иксодовых клещей. В этой связи изучение экологических, эпизоотологических и эпидемиологических проблем ИКБ на данной территории актуально.

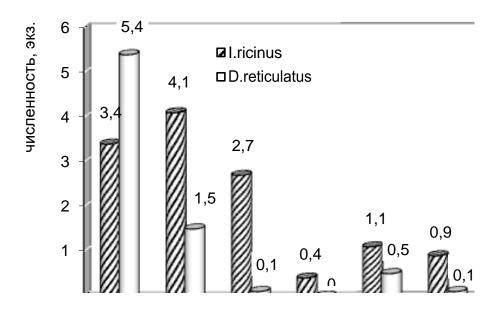
Материалы и методы

Территория Воронежской области расположена преимущественно в лесостепной зоне. Наиболее характерными экологическими чертами этой территории является сочетание открытых пространств с островными лесами. Последние представляют собой «острова» наиболее высокого видового разнообразия и численности фаунистических и флористических комплексов. В этих условиях, как правило, сосредоточен и основной потенциал возбудителей природно-очаговых инфекций и инвазий. Крупнейшим островным лесом Воронежской области является Усманский бор, на территории которого расположен Воронежский заповедник. Заповедник и сопредельные территории выбраны нами в качестве полигона для проведения исследований, посвященных изучению эколого-биологических и эпизоотологических аспектов ИКБ, а также определенных оценок инфекционного потенциала и лоймологического риска в отношении этой инфекции в условиях лесостепной зоны центра Европейской России.

Сбор материалов производили в Воронежском заповеднике и на сопредельных территориях с апреля по октябрь 2008–2009 гг. Материалами для исследований служили иксодовые клещи родов *Ixodes* и *Dermacentor*, домаш-

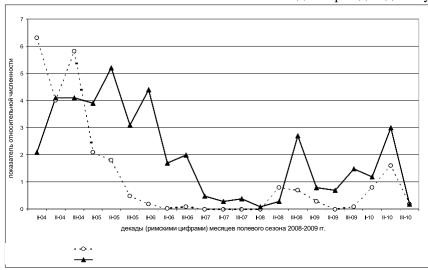
ние собаки. Сбор клещей проводили в соответствии с принятыми методиками – на флаго/км. На выделенных маршрутах учитывали видовое разнообразие, относительную численность и половозрастной состав иксодовых клещей. В период исследований регистрировали метеорологические параметры – колебания суточной температуры и влажность. На выделенных 7 маршрутах за полевой сезон отработано более 300 флаго/км и собрано свыше 2000 экз. иксодовых клещей.

Зараженных боррелиями иксодовых клещей выявляли при помощи метода полимеразной цепной реакции (ПЦР) и ее модификации — ПЦР в реальном времени (ПЦР-РВ). Этими методами исследовано 368 экз. взрослых и нимф *I. ricinus*. Для обнаружения в содержимом кишечника клеща ДНК патогенных боррелий из группы *B. burgdorferi s.l.* в качестве матрицы для амплификации использовали часть OspA-гена, кодирующего главный поверхностный липопротеин. Для идентификации и генотипирования боррелий использовали модификацию метода ПЦР, основанную на амплификации области разделяющей тандем 5S и 23S рибосомальных генов. Эти гены у представителей *В. burgdorferi s.l.* дуплицированы. По-видимому, такая комбинация не встречается ни у энтеробактерий, ни у других групп боррелий, что делает этот спайсер уникальной и удобной матрицей для генотипирования. Его нуклеотидная последовательность отличается у различных геновидов *В. burgdorferi s.l.*, что выявляется при рестрикции получаемых в ПЦР амплификатов.


Продукты рестрикции анализировали по картине их распределения при электрофорезе в полиакриламидном геле (ПДРФ-ПЦР). Для повышения чувствительности все исследуемые образцы были тестированы в режиме «гнездовой» ПЦР (nest-PCR).

Для оценки уровня инфицированности собак проведены серологические обследования. Всего на этой территории исследовано 82 собаки. Серодиагностику боррелиоза у собак для выявления зараженных и иммунных животных проводили иммунохимическими методами, используя разработанные собственные тест-системы для ELISA и WB на основе суммарного клеточного антигена боррелий. При необходимости, для улучшения чувствительности и специфичности иммунохимической тест-системы в нее дополнительно вводили рекомбинантные и синтетические антигены BBK 32, DbpA, Vls E, клонированные из региональных изолятов. В качестве контроля использовали сыворотки животных с достоверным диагнозом болезни Лайма и моноклональные антитела из референс-панели, предоставленные CDC (USA). Кроме разработанных тест-систем, тестирование сывороток проводили коммерческими наборами, разработанными на основе VslE домена.

Результаты и обсуждение


В течение полевых сезонов 2008-2009 гг. на исследуемой территории отмечено два вида иксодовых клещей сем. Ixodidae – *I. ricinus* и *D. reticulatus*. Случаи появления активных клещей были зафиксированы во второй половине марта, с момента начала таянья снега и перехода среднесуточных температур через 1 °С. На каждом из маршрутов нами проведена оценка относительной численности клещей. Совокупно величина относительной численности составила, в среднем, 3,4 экз. на флаго/км, соответственно, *I. ricinus* – 2,2, *D. reticulatus* – 1,2 экз. В период сезона активности прослежена динамика численности (активности) иксодовых клещей по месяцам (рис. 1).

Для D. reticulatus характерен апрельский пик численности, для I. ricinus отмечен ярко выраженный пик численности в мае с последующим некоторым снижением активности вплоть до середины лета. Минимальные показатели численности у обоих видов отмечены в июле. В последующие три месяца наблюдали постепенное нарастание численности, но величины, в сравнении с весенними, были существенно ниже.

Рис. 1. Сезонная динамика относительной численности *I. ricinus* и *D. reticulatus* (на флаго/км) на территории Воронежского заповедника

Показатели относительной численности двух видов иксодид существенно варьировали. Так, в первой декаде апреля численность *D. reticulatus*, соответственно и активность, в 2 и более раз превышала аналогичный показатель у *I. ricinus* (рис. 2). К концу апреля наблюдали выравнивание этих показателей, а уже с начала мая и до конца августа регистрировали доминирование *I. ricinus*. Причем нарастание индексов относительной численности *I. ricinus* мы регистрировали вплоть до третьей декады мая. Далее наблюдали выравнивание, а затем постепенное снижение их численности вплоть до второй декады августа.

Рис. 2. Данные подекадной динамики относительной численности иксодовых клещей (*I. ricinus*, *D. reticulatus*) на территории Воронежского заповедника (полевой сезон, апрель—октябрь 2009 г.).

В третьей декаде июня нарастание относительной численности *I. ricinus* (рис. 2) мы связываем с повышением влажности вследствие выпадения в этот период осадков. В последующем наиболее устойчивое повышение активности обоих видов иксодовых клещей отмечено во второй и третьей декадах сентября и первой декаде октября. Основным фактором этого возрастания активности являются атмосферные осадки, которые впервые после длительной паузы (2,5 мес) выпали лишь во второй декаде сентября.

Наиболее высокие показатели численности *I. ricinus* зарегистрированы около населенных пунктов, что указывает на тяготение иксодовых клещей к жилью человека и проявление или, возможно, усиление «синантропизации *Ixodes*». Напротив, для *D. reticulatus* подобных особенностей не выявлено.

В местности с высокой численностью *D. reticulatus*, *I. ricinus* выявлены в незначительном количестве. Это можно объяснить влиянием трофико-хорологических связей. *D. reticulatus* тяготеет к открытым участкам леса, где в начале весны наблюдается наиболее высокая активность диких копытных: кабанов, косуль, лосей и оленей, которые являются основными прокормителями имаго *D. reticulatus*. Кроме того, возможны конкурентные отношения между этими видами иксодовых клещей. В апреле доминантным видом в этой местности является *D. reticulatus*.

Выявлена прямая зависимость между активностью клещей и атмосферными факторами. Уровень корреляции (r) изменяется в течение сезона активности клещей от 0,4 до 0,7. Весной отмечена наиболее тесная зависимость (r = 0,7; P < 0,01) активности клещей с температурой и влажностью. Максимум активности зарегистрирован при температуре воздуха от 17 до 20 °C и влажности свыше 50 %. При повышении температуры воздуха свыше 25 °C и влажности менее 50 % наблюдали снижение активности клещей.

I. ricinus исследовали методом ПЦР на наличие боррелий. По результатам анализа содержимого кишечника 368 клещей (взрослых и нимф) положительный сигнал на присутствие ДНК ОspA гена боррелий B. burgdorferi s.l. был зафиксирован в 88 образцах, или 23,9 %. Показатели обсемененности имаго и нимф клещей характеризуются примерно равными величинами, 24,1 и 21,9 % соответственно. Видовой состав боррелий, циркулирующих в различных биотопах Воронежского заповедника, представлен видами из группы B. burgdorferi sensu lato. В образцах клещей обнаружены ДНК B. afzelii и B. garinii 20047. В содержимом кишечника одного клеща обнаружена ДНК обоих видов боррелий (табл.).

Обсемененность клещей боррелиями на территории Воронежского заповелника

Воронежского заповедника							
Стадия развития	Исслед.	Заражено		Возбудитель			
клеща, пол	клещей,	кол-во	%				
	экз.						
				B. afzelii –26; B. garinii 20047			
Имаго, самцы	198	35	17,7	– 7; mix (B. afzelii + B. garinii			
				(20047) - 1; не идентиф. – 1			
Имаго, самки	138	46	33,3	B. afzelii –30; B. garinii 20047			
				13; не идентиф. – 3			
				B. afzelii – 56; B. garinii 20047			
Всего имаго	338	81	24,1	– 20; mix (<i>B.afzelii</i> + <i>B. garinii</i>			
				20047) – 1; не идентиф. – 4			
Нимфы	32	7	21,9	B. afzelii − 4;			
•				B. garinii 20047 – 3			

Всего	368	88		B. afzelii – 60; B. garinii 20047 – 23; mix (B.afzelii + B.garinii 20047) – 1; не идентиф. – 4
-------	-----	----	--	--

Наиболее высокая зараженность клещей (36,0 %) отмечена в экологических стациях, расположенных вблизи жилья человека (Центральная усадьба Воронежского заповедника и другие населенные пункты), которые являются зоной наиболее высокого эпидемиологического и эпизоотологического рисков в отношении ИКБ.

Выявлены существенные различия по встречаемости боррелий у *I. ricinus* разного пола. Так, обсемененность боррелиями самок клещей составила 33,3, а самцов 17,7 %.

В содержимом кишечника двух *I. ricinus* обнаружили ДНК *Anaplasma phagocytophilum*. Степень зараженности клещей *I. ricinus* возбудителями ГЭЧ составила 0.5 %.

Собаки являются также прокормителями иксодовых клещей. Они подвержены высокому риску инфицирования боррелиями. Обследовали 82 собаки из 21 населенного пункта. На основании серологических исследований боррелиоз диагностирован у 15 собак (18,3 %). Титры антител в сыворотке крови собак варьировали от 1,031 до 2,532. При этом среди положительно реагирующих собак большая часть (40 %) диагностирована в районе Центральной усадьбы заповедника, где зарегистрирована и самая высокая обсемененность *I. ricinus* боррелиями. Можно предположить, что собаки играют роль в циркуляции ИКБ в условиях природных экосистем.

Таким образом, по результатам исследований, проведенных в природных экосистемах Воронежской области, можно констатировать, что на территории Воронежского заповедника устойчиво функционирует природный очаг ИКБ. Выявлено два вида возбудителей болезни Лайма — В. afzelii и В. garinii. Переносчиком и резервентом боррелий являются І. ricinus, зараженность которых на исследуемой территории составляет 23,9 %. Вблизи населенных пунктов наблюдается увеличение встречаемости боррелий в клещах. Численность І. ricinus в теплое время года составила, в среднем, 2,2 экз. на флаго/км. Отмечена 18,3%-ная зараженность собак боррелиями. В образцах содержимого кишечника двух І. ricinus обнаружено присутствие ДНК возбудителя ГЭЧ (А. phagocytophilum).

Литература

- 1. Алексеев А.Н., Дубинина Е.В. Симбиотические отношения в сложной системе переносчик возбудители болезней // Докл. Академии Наук. 1994. Т. 338, № 2. С. 259—261.
- 2. Коренберг Э.И. Резервуарные хозяева и переносчики боррелий возбудителей иксодовых клещевых боррелиозов в России // Журнал микробиол., эмидемиол., иммунобиол. 1997. N = 6. C. 36-38.
- 3. Коренберг Э.И., Горелова Н.Б., Ковалевский Ю.В. Основные черты природной очаговости иксодовых клещевых боррелиозов // Паразитология. -2002.-T.36, № 3.-C.177-191.
- 4. Коренберг Э.И., Крючечников В.Н. Иксодовые клещевые боррелиозы новая группа заболеваний человека // Журнал микробиол., эмидемиол., иммунобиол. 1996, N 4. С. 104—107.
- 5. Коренберг Э.И., Крючечников В.Н., Деконенко Е.П. и др. Серологическое выявление болезни Лайма в СССР // Журнал микробиол., эмидемиол., иммунобиол. 1986. \mathbb{N} 6. С. 111–113.
- 6. Коренберг Э.И., Щербаков С.В., Крючечников В.Н. Материалы по распространению болезни Лайма в СССР // Мед. паразитол. 1987. № 2. С. 71—73.

- 7. *Наумов Р.Л., Васильева И.С.* Пораженность населения боррелиями и заболеваемость болезнью Лайма // Мед. паразитол. 2005. № 2. С. 40–42.
- 8. Ромашов Б.В., Василенко В.В., Рогов М.В. Трихинеллез в Центральном Черноземье (Воронежская область): экология и биология трихинелл, эпизоотология, профилактика и мониторинг трихинеллеза. Воронежский государственный университет, 2006. 181 с.
- 9. Ромашов Б.В., Пустовит Н.С., Штанников А.В. и др. Обнаружение природного очага иксодового боррелиоза в Воронежской области // Матер. докл. науч. конф. Всерос. о-ва гельминтол. РАН «Теория и практика борьбы с паразитарными болезнями». М., 2009. Вып. 10. С. 318–321.
- 10. Ромашов Б.В., Ромашов В.А., Семенов В.А., Филимонова Л.В. Описторхоз в бассейне Верхнего Дона (Воронежская область): фауна описторхид, эколого-биологические закономерности циркуляции и очаговость описторхидозов. Воронеж: Воронежский государственный университет, 2005. 201 с.

Lyme disease in Voronezh region: ecological and epizootic specials

B.V. Romashov, N.S. Volgina, A.V. Shtannikov, N.B. Romashova, D.V. Trankvilevsky, Y.O. Bakhmeteva

In Voronezh region registered on the natural center of Lyme disease. It is revealed two species agents of Lyme disease – *Borrelia afzelii* and *B. garinii*. Infection by borreliae of ticks (*Ixodes ricinus*) is 23,9 %. Infection by borreliae of dogs is 18,3 %.

Keywords: borreliosis, *Ixodes ricinus*, *Borrelia spp.*, natural ecosystem, dogs, Voronezh area.